MRC PPU Press Coverage Highlights: 2018-2023
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metrics Summary</td>
<td>3</td>
</tr>
<tr>
<td>Highlights</td>
<td>5</td>
</tr>
<tr>
<td>UK Press Coverage</td>
<td>10</td>
</tr>
<tr>
<td>International/Global Press Coverage</td>
<td>51</td>
</tr>
<tr>
<td>TV & Radio</td>
<td>84</td>
</tr>
<tr>
<td>Blogs & Podcasts</td>
<td>101</td>
</tr>
<tr>
<td>Print clippings</td>
<td>112</td>
</tr>
</tbody>
</table>
Metrics Summary
101
Pieces of Coverage
Total number of online, offline and social clips in this book

1.95M
Estimated Views
Prediction of lifetime views of coverage, based on audience reach & engagement rate on social

462M
Audience
Combined total of publication-wide audience figures for all outlets featuring coverage

19.5K
Engagements
Combined total of likes, comments and shares on social media platforms
Highlights
Scottish researchers make major breakthrough in the battle against Parkinson's

Sheep and bacteria are helping in the fight against coronavirus – here’s how

Indian scientist honored as one of Europe’s top talents in biology

Parkinson’s Drugs Aimed at Rare Gene Mutation Show Promise for Other Sufferers, Too
Universities of Glasgow and Dundee join fight against coronavirus

Glasgow News, Sport, Events - Gla...

Glasgow News, Sport, Events - Gla...

Dundee scientists discover how to destroy 'undruggable' cancer-causing protein

The Courier

Dundee scientists discover how to destroy 'undruggable' cancer-causing protein

The Courier

Dundee scientists discover how to destroy 'undruggable' cancer-causing protein

The Courier

Dundee scientists discover how to destroy 'undruggable' cancer-causing protein
Scots scientists uncover genetic cause for Parkinson's Disease in breakthrough which could lead to new treatments

The Herald
Scots scientists make Parkinson's Disease breakthrough

8.25K 2.14M 0

Being Patient
Benjamin Stecher: Why Is It Taking So Long To Stop Neurodegenerative Diseases?

1.31K 40.5K 215

Forbes
Exclusive: Google Cofounder Sergey Brin Has Quietly Donated More Than $1 Billion Toward Parkinson's Disease

86.6K 73.3M 1.1K

Asianet News Network Pvt Ltd
भारतीय महिला वैज्ञानिक को दिया गया यूरोप का प्रतिष्ठित सम्मान, जानिए किस चीज़ पर रिसर्च कर रहे हैं वोरोला ब्रोगना

37.5K 3.56M 0

Scientists confirm the role of 'molecular switch' in Parkinson's disease

MRC PPU Press Coverage Highlights: 2018-2023

119K 64.5M 0

BBC ALBA - Trusadh: Parkinson's (Na Làithean Shoogly)/Parkinson's (The Shoogly Days)

457K 77.6M 797
Scotland Tonight Interview

Mirror Muqit talks about new research for the treatment of Parkinson's disease. Find out more, watch the full discussion at 10:30pm.

LBC Radio

Ian Dale show interview: Esther Sammler - clinical neurologist role & lived experience.

BBC

BBC Radio Scotland (Good Morning Scotland Show) Interview: Dario Alessi -...
UK Press Coverage

40 pieces of coverage
Scottish researcher wins 'prestigious' £440,000 prize for pioneering...

Dundee professor wins prize for Parkinson's disease research

24th January

Professor Dario Alessi's work on Parkinson's has been recognised (Image: University of Dundee)

By Helen Pickles

A UNIVERSITY of Dundee scientist has been awarded one of the most prestigious prizes in his field.

Professor Dario Alessi, from the university's Medical Research Council Protein Phosphorylation and Ubiquitination Unit (MRC-PPU) in the School of Life Sciences, won the 2023 Lister-Cullen Prize for Translational Medicine.

Estimated Views 4.76K
Estimated views calculated based on audience size and social...

Engagements 0
Total number of social engagements
Sheep and bacteria are helping in the fight against coronavirus – here’s how

Sheep and bacteria are helping in the fight against coronavirus – here’s how

SARS-CoV-2, the virus that causes COVID-19, works by infecting the respiratory system. If it gets into the lungs, it causes an immune reaction, which can lead to pneumonia and even death.

At the University of Dundee, we have identified 28 proteins created by SARS-CoV-2 that produce an immune response in the body. These proteins are vital research tools for developing diagnostics and in helping to understand how the virus infects and attacks us.

Viruses are encoded by genetic information called RNA, which serves as a blueprint for how they are put together. The "program" contains information on how to replicate and how to infect and attack their host. As scientists, we can learn this genetic code and use it to fight the virus.
Dundee doctor pedalling hundreds of miles for Parkinson’s fundraiser

dailyrecord.co.uk/news/scottish-news/du...

Estimated Views 71.8K
Estimated views calculated based on audience size and socia...

Engagements 0
Total number of social engagements
We've been working with @MichaelJFoxOrg to remove barriers to progress in Parkinson's research by generating antibodies to key targets. Watch the video to hear from Prof Dario Alessi @mrcpp @UnDLifeSciences on the impact the right research tools can make.

#WorldParkinsonsDay
Online events look at Parkinson’s research and treatments and allow...

ross-shirejournal.co.uk/news/online-event...
Series of online events will look at Parkinson’s research and treatments

northern-times.co.uk/news/series-of-onlin...
Sir Philip Cohen celebrates 50 years at the University of Dundee - we look back...

thecourier.co.uk/ep/education/higher-edu...
New research findings may lead to new treatments for Parkinson’s

deadlinenews.co.uk/2021/08/04/new-res...

Estimated Views

Engagements
Dundee University smash target and raise £40,000 for Parkinson’s research

dhecourier.co.uk/fp/education/higher-edu...
Scots study sparks hope for coeliac disease treatment

heraldscotland.com/news/homenews/194...

Estimated Views 8.37K
Estimated views calculated based on audience size and socia...

Engagements 88
Total number of social engagements
Dundee University's Shaky Team cycling 200 miles for Parkinson's research

Dundee University's Shaky Team cycling 200 miles for Parkinson's research

A team of Parkinson's Disease campaigners and supporters are to cycle hundreds of miles for a Dundee University fundraising campaign.

Members of the Shaky Team will be cycling 30 kilometres every three days throughout...
Toolkit Supports Global Research into COVID-19 Variants

An international consortium, led by scientists in Scotland, have recently devised a coronavirus Toolkit giving researchers from across the world open access to materials, including antibodies and genetic tools, to further research into COVID-19.

Designed and validated by scientists at the MRC-University of Glasgow Centre for Virus Research (CVR) in partnership with the MRC Prion Phosphorylation and Ubiquitylation Unit (MRC PPU) at the University of Dundee, the toolkit is important for many avenues of COVID research including characterising new variants of the SARS-CoV-2 virus. It will also help researchers to improve our understanding of COVID-19 disease, monitor vaccine efficacy and evaluate additional treatment options for COVID-19, as well as helping to aid preparedness for future coronavirus pandemics.

Dr Sariel Wibisono, Senior Research Fellow at the CVR, said: “Fortunately COVID-19 is not over, and much remains unknown about this disease. Having the right tools is essential for any scientist studying SARS-CoV-2 and our toolkit will allow researchers to conduct experiments not previously possible.

“The development of vaccines for COVID-19 is encouraging, but there is still a lot to learn about this virus. The simple genetic tools we’ve made available to the community will help scientists understand the role of individual changes in new variants of SARS-CoV-2 (which often contain multiple individual changes) – and our online toolkit and portal will allow scientists to access antibodies and other tools for research, at cost, at the click of a few buttons.”

Suzannta Rife, Sir Henry Wellcome Postdoctoral Research Fellow at the CVR, said: “The recent vaccination successes offer us a way out of this pandemic. However, vigilance is required, as more viral variants may continue to emerge, and these may be resistant (or partially-resistant) to the vaccines. It is likely that future vaccinations will be required in years to come. The tools we’ve made openly available to the scientific community will allow scientists to engineer these variants and study them in the lab.”

Professor Chris Hiles, Director of the MRC PPU at Dundee, said: “We are delighted to have been able...
Scots can prosper if our work is joined up and supported

thetimes.co.uk/article/scots-can-prosper-i...

Estimated Views 42.7K
Estimated views calculated based on audience size and social...

Engagements 0
Total number of social engagements
As part of the Government’s £215 million World Class Labs investment scheme bringing upgrades to research organisations across the UK, the University of Dundee has received two grants totaling more than £1 million in the areas of life sciences and arts and humanities.

The University & MRC Protein Phosphorylation and Ubiquitylation Unit (MRC PPU) has been awarded £180,000 to purchase mass spectrometers and key computational resources to support research. Professor Danu Alasa, Director of the MRC PPU, said, “We are immensely appreciative for this generous funding, especially during such challenging times. This has allowed us to purchase a state-of-the-art new mass spectrometer and other instruments to undertake biological analysis. This apparatus will help our investigators to better probe the biological mechanisms underlying diseases including cancer and Parkinson’s.”

A further £249,000 will allow a team from the University to obtain the equipment necessary to digitise internationally important archives and media collections. In doing so, they will ensure these resources remain accessible, enabling a longer-term strategy to support the creative economies through research projects and public engagement.

Calum Cavin, Professor of Fine Art Photography at Dundee’s Jordanstone College of Art & Design, said, “The University is an important centre for creative collections within the UK research landscape, with particular strengths in non-traditional archives and museum collections, such as time-based art, comics and artists’ books. This grant will allow our multi-disciplinary team at Duncan of Jordanstone College of Art & Design, the School of Humanities and the Archives & Museums Services to expand public engagement and publication activities.”
University of Dundee: At The Forefront of the City’s Growth Ambitions

built-environment-networking.com/news/...

Estimated Views

1.11K

Estimated views calculated based on audience size and social...

Engagements

0

Total number of social engagements

Alongside Dundee City Council, we’re hosting a free to attend virtual event – Invest in Dundee: Key Drivers for Economic Recovery – and one of the key players in the future economic success of the region is the University of Dundee. We’ve been speaking exclusively with Prof Sir Alan Ferguson on the importance of the University to the city – and their ambitious plans to be at the forefront of this for years to come.

G. How important is the University of Dundee to the city?
I tend to think very important for a whole host of reasons. With an annual turnover of about $250 million, and employing about 1,200 people in the City, the university is major component of the regional economy. It’s in the supply chain and service industries that support the university and you can see what a major economic driver the University of Dundee is. Of course, universities are about training the next generation of doctors, nurses, dentists, scientists, accountants, architects, economists, artists, linguists, historians – you name it. Much of the talent stays in the region which further drives the economy and fuels our key services. Last but not least, the university is a key component of local culture and brings reputation and international reach for the City of Dundee.

G. Over the past 5-10 years there has been some major development activity across Dundee, and its image has been boosted by this – is this helping the University attract more students?
Yes, most certainly. The University was delighted to be a part of the V&A project, for example. The V&A and the whole waterfront vision makes Dundee a much more attractive location for students and it augments Dundee’s cultural reputation for being a friendly and fun place, as well as academically a great place, to study.

G. How important is the estate and facilities for attracting such talent – and is there any potential for new development plans or expansions in the pipeline?
Yes, ongoing development is crucial. A successful university must be fit-for-purpose, current and relevant – otherwise it will fail to be mission and the talent will go elsewhere. Major projects on the cards are our Top Cities Deal-supported Innovation Site, to accommodate high-growth Life Sciences and MedTech companies, and the JustFood collaboration and innovation centres for food science, led by Professor Amini Yac Davoud. Of course, colleagues in the university are also working hard with Dundee City Council on the possibility of creating an Eden Centre here – something that would bridge tourism, education and scientific research in an exciting way.

MRC PPU Press Coverage Highlights: 2018-2023
Researchers discover new pathway that sheds light on intellectual disability – Research UK

Researchers from the University of Dundee have discovered a new pathway that offers the potential for new therapeutic strategies for a major developmental disorder that affects hundreds of millions of people across the globe.

Intellectual disability, a neurodevelopmental condition characterised by significant limitations in both cognitive function and adaptive behaviour, affects an estimated 1-3% of the world’s population.

The cause of the disease remains largely unknown, meaning scientists need to understand in molecular detail the processes that go wrong during development of the nervous system.

Researchers, led by Dr. Craig Findlay in the University’s School of Life Sciences, used a stem cell model to uncover a new pathway for cellular communication that is disrupted in intellectual disability patients.

deadlinenews.co.uk/2020/10/27/research...
Multi-million dollar boost hailed as 'once in a lifetime' Parkinson's research...

[Link: thecourier.co.uk/FP/education/higher-edu...]

Estimated Views 7.58K
Estimated views calculated based on audience size and social...

Engagements 0
Total number of social engagements

Multi-million dollar boost hailed as ‘once in a lifetime’ Parkinson’s research opportunity by Dundee Uni expert

Get the latest from our Schools and Family team straight into your inbox

News, analysis and helpful tips for you and your family

Enter your email address

Sign Up
Obituary - Internationally-acclaimed Invergowrie scientist Professor Lady Tricia Cohen

thecourier.co.uk/fp/education/higher-edu...

Estimated Views 7.58K
Estimated views calculated based on audience size and socia...

Engagements 0
Total number of social engagements
Companies Pledge Funds to Accelerate Drug Discovery Process

labmate-online.com/news/news-and-view...

Estimated Views 4.69K

Engagements 0
Enzyme breakthrough by Dundee scientists could pave way to treatments for Parkinson's, MS and MND

3rd August 2020

A DISCOVERY by scientists in Dundee could pave the way to new treatments for neuro-degenerative disorders such as motor neurone disease, Parkinson’s and multiple sclerosis.
Breakthrough at Dundee University

University of Dundee researchers have shown that it is possible to destroy an ‘undruggable’ protein known to play a role in cancer, raising the possibility of a new therapeutic approach to the disease.

A team from Dundee’s School of Life Sciences, led by Dr Gopal Sapkota (pictured), had previously engineered the Affinity-directed PROtein Mistletoe (APROM) system that allows for the efficient and rapid degradation of specific target proteins in cells. Being able to degrade intracellular disease-causing proteins offers a unique opportunity for therapeutic intervention but it was not known whether these ‘protein missiles’ would be able to destroy K-Ras.
Breakthrough at Dundee University

University of Dundee researchers have shown that it is possible to destroy an 'undruggable' protein known to play a role in cancer, raising the possibility of a new therapeutic approach to the disease.

University of Dundee researchers have shown that it is possible to destroy an 'undruggable' protein known to play a role in cancer, raising the possibility of a new therapeutic approach to the disease.

A team from Dundee's School of Life Sciences, led by Dr Gopal Baskota (pictured), had previously engineered the Affinity-directed PROtein Missile (AdPROM) system that allows for the efficient and rapid degradation of specific target proteins in cells. Being able to degrade intracellular disease-causing proteins offers a unique opportunity for therapeutic intervention but it was not known whether these 'protein missiles' would be able to destroy K-Ras.
Dundee scientists discover how to destroy ‘undruggable’ cancer-causing protein

By Emma Crichton July 14, 2020, 4:00pm

Dundee scientists have discovered how to destroy a type of cancer that has previously been considered ‘undruggable’.

The research, led by Dr Sepehri Sajjadi, has implications for the treatment of various forms of cancer, particularly those that have become resistant to existing drugs.

Dr Sajjadi said: “We have identified a new way to target the cancer cells and disrupt the protein that is associated with drug resistance. This is a significant breakthrough that could lead to more effective treatments for patients.”

The team’s findings have been published in the prestigious journal Nature.

Read the full article on thecourier.co.uk/education/higher-edu...
Should we wash our shopping? Wear a mask to the shops? Use a lift? Well…

sundaypost.com/…
Glasgow City of Science & Innovation

Glasgow City has a talent for science and innovation. We have one of the most diverse and dynamic innovation economies in Europe.

Universities Join Forces In Pandemic Fight | Glasgow City Of Science & Innovation

Scientists at the Universities of Dundee and Glasgow are combining their expertise to aid the global battle against coronavirus.

The collaboration brings world-leading researchers at Medical Research Council-funded units at both institutions together to generate biological tools that will enable them to study the virus and identify ways of defeating it.

The MRC Protein Phosphorylation and Ubiquitylation Unit (MRC PPU) at Dundee have identified 38 separate proteins produced by SARS-CoV-2, the virus that causes COVID-19, that produce an immune response in the body. Over the next four months, the Dundee team will manufacture these components of the virus in order to generate antibodies against them.

These research tools will then be used by the University of Glasgow’s Centre for Virus Research (CVR) to study the virus.

All of the antibodies designed as part of the Dundee-Glasgow collaboration will be made available to the global research community on an open source basis to enhance efforts to tackle the disease.

Professor Dario Alessi, Director of MRC PPU, said, “I am delighted that we have been able to rapidly exploit the tremendous expertise available within our Unit to generate antibodies that recognise each of the 38 proteins encoded by the COVID-19 virus. This represents a titanic effort, and I would like to acknowledge our dedicated staff who are working night and day on this project.

“These antibodies represent unique set of tools to study the inner workings of covid-19. They will help future research aimed at understanding fundamental COVID-19 biology and the quest..."
Dundee scientists join forces with Glasgow counterparts to identify ways to defeat coronavirus

thecourier.co.uk/fp/education/higher-edu...
Universities of Glasgow and Dundee join fight against coronavirus

glasgowtimes.co.uk/news/18343187.unive...
Major clinical trial raises hope that malaria drug could treat Covid-19

inews.co.uk/news/health/major-clinical-tri...
As Ozzy Osbourne shows, Parkinson’s isn't always a death sentence

telegraph.co.uk/health-fitness/mind/ozzy-...

Estimated Views 57.6K
Estimated views calculated based on audience size and social...

Engagements 90
Total number of social engagements
Columnists

Help cancer research take a big step by helping us fund vital projects – Dr Helen Rippon

This month, Worldwide Cancer Research marks its 40th anniversary. Reaching a milestone year like this naturally prompts reflection.

By The Newsroom
26th Nov 2019, 11:26am

In the 40 years since the charity was established, we have funded 1,870 projects in 32 different countries across the world.

Cancer survival rates have doubled since Worldwide Cancer Research was first founded, which demonstrates the importance of this work – but we still have a long way to go.

Helen Ad

scotsman.com/news/opinion/columnists/...
Dundee scientists reveal new tool in fight against Parkinson’s

[Link to article](thetimes.co.uk/article/scientists-reveal-ne...)

Professor Dario Alessi said his discovered enzyme could help to block the pathway to Parkinson's disease.

Scientists have found a completely new way to "put the brakes on the runaway train" of Parkinson's disease.

Dundee University's school of life sciences has found an enzyme that inhibits a gene mutation, known as a JABRK2, that is the most common cause of genetic Parkinson’s — whose sufferers include Billy Connolly, 78, and the actor Michael J Fox.
Researchers at Scottish University make critical discovery that could lead to cure for cancer

Researchers at Scottish University make critical discovery that could lead to cure for cancer

Scientists at a Scottish university have discovered a new cell cycle and molecule that may help shed light on the mystery behind the development of cancer.

The pioneering research was carried out by PhD Student Luke Fletcher under the supervision of Dr Gopal Sapkota at his lab at the University of Dundee.

The discovery could one day lead to a new treatment or even a cure for cancer.

Researchers identified a new player in the cell division process which they called CKI Alpha, an enzyme which acts to ensure proper, accurate splitting of the cells.

However, this enzyme also has a molecule responsible for coordinating its role in the division of cells called FAM53B.
Scots scientists uncover genetic cause for Parkinson's Disease in breakthrough which could lead to new treatments

7th November 2020

 Scots scientists make Parkinson's Disease breakthrough

heraldscotland.com/news/17208470.scot...

Estimated Views 8.25K
Estimated views calculated based on audience size and socia...

Engagements 0
Total number of social engagements
Dundee scientists overturn odds to make Parkinson’s discovery

dthecourier.co.uk/fp/education/higher-edu...

Estimated Views 7.58K
Estimated views calculated based on audience size and socia...

Engagements 0
Total number of social engagements
Dundee biochemist celebrates 50 years of continuous funding

Sir Philip Cohen is best known for his research into how insulin works.

A Dundee University biochemist is celebrating 50 years of continuous funding.

Sir Philip Cohen joined the university in 1971 and is best known for his groundbreaking research into how insulin works.

Over the past decade, Sir Philip has switched the focus of his research to how the human immune system works at a molecular level.

He has now been awarded more than £3m to support a five years project researching the human immune system.

He said: “Just over ten years ago I realised that the technology and know-how I had developed to work out how insulin controls the body’s metabolism would also enable me to understand how the immune system works at the molecular level.

“I therefore took the somewhat risky decision to abandon all my other research projects and focus on this entirely new, but very exciting, project about which I had little knowledge at the time.

“It has been a huge learning experience for me, and indeed I am continuing to learn something new about immunity every day, but all the effort has paid off with a number of novel and exciting findings that we will be building on with these new awards.”
Dolly the Sheep scientist backs Dundee-Edinburgh Parkinson's research project

dolly.co.uk/dundee/634146...
Parkinson's patient raises £70,000 in one year for charity

Marc Van Grieken donated the money to Parkinson's UK research at Dundee University.

A Parkinson's patient who has lived with the disease for more than a decade raised £70,000 in one year for Parkinson's UK.

Marc Van Grieken, from Comrie, turned 60 last year and set himself the challenge of raising £60,000 for the charity.

A year of cycling challenges, fundraisers and marathons for him, his family and friends saw his target being smashed, and he presented £70,000 to Dundee University on Tuesday.

While at the university's medical research centre, Mr Grieken was talked through how his donation will be spent.

"Whilst this challenge has progressed over this year, so has my Parkinson's," he said.

"This has made everyday tasks and life a little more difficult but it demonstrates perfectly the importance of finding a cure and developing treatments."

"I've been overwhelmed by the support I've had from across Scotland and beyond in what's already been a memorable and rewarding year."

"All the money raised is going to support a fantastic team of world-class researchers in Dundee."

"Already this year they've achieved ground-breaking results and I want to help them."

archive.news.stv.tv/north/1409702-parkin...
Scottish researchers make major breakthrough in the battle against Parkinson's disease

Professor Dario Alessi and his team at the University of Dundee, collaborated with the Michael J Fox Foundation, GlaxoSmithKline, and others, to examine a gene which mutates to cause inherited forms of the illness.

The inherited form of Parkinson’s – which accounts for around 10 per cent of cases – is prevalent in people who contract the disease early.
Pathway sheds light on intellectual disability

Welcome to Bio-Dundee

biodundee.co.uk/science-city/news/path...

Pathway sheds light on intellectual disability

Researchers from the University of Dundee have discovered a new pathway that offers the potential for new therapeutic strategies for a major developmental disorder that affects hundreds of millions of people across the globe.

Intellectual disability, a neurodevelopmental condition characterised by significant limitations in both cognitive function and adaptive behaviour, affects an estimated 1-3% of the world’s population. The cause of the disease remains largely unknown, meaning scientists need to understand in molecular detail the processes that go wrong during development of the nervous system.

Researchers, led by Dr Greg Findlay in the University’s School of Life Sciences, used a stem cell model to uncover a new pathway for cellular communication that is disrupted in intellectual disability patients. This pathway controls a protein called REX1 that governs gene expression in stem cells and regulates a programme of genes that is required for the correct development, patterning and functioning of the nervous system.

"Excitingly, the fact that the enzymes in this pathway are disrupted in patients with intellectual disability disorders provides new insight into the fundamental underpinnings of intellectual disability," said Dr Findlay.

"Intellectual disability is devastating for patients and their families but we are only beginning to learn about what goes wrong during nervous system development in order to cause these disorders. The discovery of a pathway which we now know is disrupted in people with intellectual disability could lead to a new therapeutic approach to treat these patients."

The research was spearheaded by Dr Francisco Barros, a postdoctoral researcher in Dundee’s MRC Protein-Phosphorylation and Ubiquitylation Unit (MCRPDU), with a major contribution from PhD student Anna Segarra-Fax.

The Dundee scientists collaborated with colleagues from the Institute of Biomedical Sciences in Santiago, Chile, during the course of the research, which was funded by generous support of nearly £300,000 from the Medical Research Council and over £1 million from Wellcome and the Royal Society.

The study is published in the latest edition of Developmental Cell.
DUNDEE EXPERTISE AIDSCOVID-19 TESTINGEFFORT | Invest in Dundee

investindundee.com/news/dundee-expertise-aids-covid-19-testing-effort

Estimated Views 51
Estimated views calculated based on audience size and socia...

Engagements 0
Total number of social engagements

Dundee Expertise AIDS COVID-19 Testing Effort

The University of Dundee has helped establish Scotland’s central COVID-19 testing facility in support of the national response to the coronavirus pandemic.

The centre, based at the University of Glasgow, was announced by the UK Government yesterday as part of a series of measures to increase testing and response to the spread of COVID-19 across the UK. It will be opened in collaboration with the Scottish Government and industry experts from BioAscent Discovery Ltd and Dundee’s Discovery Fund.

The World Health Organisation has consistently advised that one of the key ways to curb the spread of COVID-19 is to carry out as much testing as possible. With the addition of this new facility, Scotland has gained the capacity to carry out substantially more COVID-19 tests per day.

David Gray, Head of Biology and Professor of Translational Biology at the DRI, played an integral role in the design and implementation of the Scottish testing centre and has also advised on operating procedures. Professor Gray said, “The increase of testing capabilities will undoubtedly help to save lives and ease the burden on the NHS so I was pleased to be able to bring my skills to bear on this global problem. I have been incredibly impressed and gratified by the rapid offers of help from colleagues across industry and academia, and from our many suppliers.

“We are committed to doing everything we can to help the local, national and international efforts to fight COVID-19. The cooperation and determination across this and other institutions is exceptional.” The site is already designed to meet industrial scale standards and will be able to begin testing in mid-April. It will be staffed on a 24/7 basis by more than 500 volunteers including highly-experienced molecular scientists, technicians and bioinformaticians – all with the relevant skills and experience to carry out COVID-19 testing. All the scientists and technicians involved have volunteered their services to assist the NHS at this critical time.

The Glasgow centre is one of a number of new hub laboratories to be opened in order to increase COVID-19 testing during the crisis. The centres will be coordinated by the Medicines Discovery Catapult, and the project supported by partners Thermo Fisher Scientific, Amazon, Boots and Royal Zoological Society of Scotland.

Scottish Government Cabinet Secretary for Health and Sport, Jeane Freeman, said: “I am very grateful to Glasgow University and experts from BioAscent and Dundee University, together with the many skilled volunteers who have come forward to work in the centre, for taking the lead in establishing this testing centre. This is clearly a major undertaking. When it becomes operational, the centre will make a significant difference in the fight against the COVID-19 pandemic.”

The University of Dundee is assisting the national effort to combat coronavirus in many ways, including:

• Offering inpatient and outpatient care in partnership with the NHS
• Conducting research into the coronavirus
• Providing support and advice to the public
International/Global Press Coverage

32 pieces of coverage
Indian student wins prestigious scholarship at the University of Dundee

telegraphindia.com/edugraph/campus/in...

Estimated Views 11.5K
Estimated views calculated based on audience size and social...

Engagements 0
Total number of social engagements
Women’s success worth that much more, given high bars & barriers

iglobalnews.com/newsviews/womens-su...
Exclusive: Google Cofounder Sergey Brin Has Quietly Donated More Than $1 Billion Toward Parkinson’s Disease

Kerry A. Dolan | Forbes Staff
I'm an editor covering Forbes' coverage of the world's greatest people.

Dec 9, 2022, 06:00am EST

Google cofounder Sergey Brin is one of just a few people alive today to have donated more than $1 billion to a specific disease.

A dozen years ago, Google cofounder Sergey Brin disclosed in a rare interview that he has a much higher chance of getting Parkinson’s disease than the general population, due to a genetic mutation. Since then, without fanfare, Brin—now the...
Le Prix Louis-Jeantet 2023 récompense trois spécialistes de l’activité des protéines

La fondation genevoise a attribué son prix de médecine conjointement au Croate Ivan Dikic et à l’Américaine Brenda Schulman. Le Britannique Dario Alessi reçoit quant à lui le Prix Jeantet-Collen pour la médecine translationnelle.
Scottish researcher wins 'prestigious' £440,000 prize for pioneering research...
Indian scientist at University of Dundee recognised as one of Europe's top talents

telegraphindia.com/edugraph/news/india...
Indian Scientist Dr Mahima Sawant Honoured At One Of Europe's Top Institutes In Biology

TeluguStop.com Website is your number one source for all Telugu Happenings Around World. Our Experienced Team is dedicated to provide you with Telugu...

December 28, 2022 • ONLINE

dr proofs for Dr Mahima Sawant...
telugustop.com/indian-scientist-dr-mahim...

Estimated Views 149K

Engagements 11

MRC PPU Press Coverage Highlights: 2018-2023
Indian scientist honored as one of Europe's top talents in biology

economictimes.indiatimes.com/news/indi...
Indian scientist at Dundee recognised as one of Europe’s top talents

Published on December 27, 2022

Dr Mahima Swamy, from Bangalore, one of the University of Dundee’s most revered experts within their School of Life Sciences, has been named as one of the rising stars of European science. Due to her research, she has been chosen to join the prestigious European Molecular Biology Organization (EMBO) Young Investigator network.

Based within the University’s Medical Research Council Protein Phosphorylation and Ubiquitlation Unit (MRC-PPU), Dr Swamy heads a research group that investigates immune responses in the intestine and joins 29 other researchers to become a part of the network of 135 current and 390 former members of the programme.

She said, “I am really excited to be a part of this network and meet all the dynamic young scientists doing cutting-edge research across Europe. I believe that being a part of this esteemed group will help our research immensely, and I am very grateful to my lab and my mentors for the support that got me this award.”

A key part of Dr. Swamy’s work is the study of inflammatory bowel diseases and how these can be prompted by the body’s immune system attacking the gut lining in the absence of infection. Research in the Swamy group aims to address how we can better harness the gut immune system to protect against harmful invasion, but also prevent it from damaging the gut.

The EMBO Young Investigator programme supports the scientific endeavours of researchers who have become laboratory group leaders in the past four years. EMBO Young Investigators are selected by a team of EMBO members for the high standard of their research.

“It is marvellous news that Mahima has been awarded a prestigious EMBO award,” said Professor Dario Alessi, Director of the MRC-PPU.

“It is well deserved recognition and a huge boost for the vital research that Mahima is undertaking on deciphering the biological roles of the enigmatic intraepithelial lymphocytes that patrol the intestinal epithelium. Mahima’s work is contributing to improved understanding, treatment and diagnosis of inflammatory bowel disease and colon cancer.”

The work of Dr. Swamy is just part of the reason the University of Dundee remains on the cutting edge of new research and technology.
Cofundador do Google doou mais de US$ 1 bilhão para pesquisa de Parkinson

forbes.com.br/forbes-money/2022/12/ser...
La investigadora Pérez Oliva: "Por desgracia, las anemias congénitas no se pueden tratar con hierro"

Conversamos con la galardonada en los Premios L'Oréal-UNESCO ‘For Women in Science’ sobre su proyecto y la situación de la mujer en la ciencia.

17 octubre 2022 - 02:00

Lo más leído

1. Una mujer se destaca en ’Televisión Española’ y José Antonio para el programa ‘Vosotros…’

2. El popular lúdico en España que se relaciona con la derrama la menuda altura de…

3. Este es el sueño de un conductor de autobús en Madrid
Small molecule helps to eliminate a Parkinson’s disease-causing protein

Researchers from the University of Dundee have discovered a small molecule that helps to eliminate a Parkinson’s disease-causing protein, writes the Scottish university in a press release.

Parkinson’s disease is a progressive neurodegenerative disorder affecting more than 10 million people worldwide. No cure is available and current treatment is limited to symptomatic management.

Researchers from the University’s Centre for Targeted Protein Degradation (CoTD) and MRC Protein Phosphorylation and Ubiquitination Unit (MRC-PPU) have made significant strides towards developing new therapies through the design of XL01126, a small molecule that degrades a protein known to play a key role in the development of Parkinson’s.

Therapeutics for Parkinson’s

The protein, Leucine Rich Repeat Kinase 2 (LRRK2), is one of the most important and promising targets for developing treatments for Parkinson’s disease, but until now...
Ana Belén Pérez Oliva (IMIB): "La ilusión y la perseverancia son la base de la carrera científica"

Los avances de la investigadora del Instituto Murciano de Investigación Biosanitaria (IMIB) están dirigidos a mejorar la calidad de vida de las personas que padecen anemias congénitas.
Los premios L’Oreal-Unesco ‘For Women in Science’ reconocen el trabajo de la científica del IMIB Ana Belén Pérez-Oliva

Cuenta con una destacada trayectoria nacional e internacional y actualmente forma parte del IMIB-FFIS como investigadora distinguida Miguel Server, donde colabora con el Servicio de Hematología de La Arrixaca

L.C.
31-07-22 | 06:18

"Eś inflamadora como una nueva diosa terapéutica para tratar las enfermedades es la investigación que ha llevado a cabo Ana Belén Pérez Oliva del Instituto Murciano de Investigación Biomédica, y la que la ha llevado a obtener el galardón en los premios L’Oréal-UNESCO ‘For Women in Science’. Nueva oliva cubierta con una destacada trayectoria nacional e internacional y actualmente forma parte del IMIB-FFIS como investigadora distinguida Mig..."
These 12 individuals have a rare genetic quirk that prevents 'self-eating' in cells

by Niccelta Lanese published June 25, 2021

A lysosome (orange) fuses with an autophagosome (large sphere) during autophagy, the process by which cells recycle their worn-out parts. Image courtesy: Getty Images/Thinkstock/CIENCE PHOTO LIBRARY

Scientists uncovered a rare genetic quirk in 12 people, from five different families, that leaves their cells unable to properly recycle their worn-out parts. Such mutations could be lethal, but these individuals have survived and instead live with neurodevelopmental conditions.

livescience.com/genetic-quirk-self-eating-...
Beactica Therapeutics and University of Dundee announce collaboration to develop WRN inhibitors to target cancer

Published: Jan 12, 2021

STOCKHOLM, Jan. 12, 2021 /PRNewswire/ -- Beactica Therapeutics AB, the Swedish drug discovery company, and University of Dundee, a top-ranked university in the UK for biological sciences, today announced a new research collaboration agreement. The two parties will work together in a project aimed at inhibiting WRN helicase, a protein with significant therapeutic potential for cancers with microsatellite instability.

The collaboration will leverage core capabilities of each partner and build on the work of Professor John Rouse, on the control of chromosome stability and DNA repair in cancer. Beactica will contribute key technical strengths in identifying and optimizing allosteric binders as well as evaluating ternary degradation complexes formed by PROTACs based on such binders. The collaboration will also benefit from top facilities and expertise available at Dundee, including the Drug Discovery Unit, headed by Prof. Paul Wyatt PhD and the MRC Protein Phosphorylation and Ubiquitylation Unit headed by Prof. Dario Alessi.

WRN (Werner syndrome helicase) is an enzyme required for DNA replication and DNA repair and a validated target for tumours with microsatellite instability (MSI+). "Microsatellites" are short tracts of repetitive nucleotide sequences prone to insertions/deletions during DNA replication. Normally these insertions/deletions are repaired by the mismatch repair pathway but failure to do so causes cancers with, called MSI+. MSI+ is found in ~20% of all cancers and is also...
University of Dundee’s research on destroying cancer-causing K-Ras protein shows promise

In the vast majority of human diseases, amplification or genetic mutations alter the protein function in cells and this is what causes the damage that diseases wreak on the body.
University of Dundee Researchers destroy ‘undruggable’ cancer causing K-Ras protein

The team has shown, for the first time, that it is possible to target K-Ras for degradation using AdPROM system

Researchers at Scotland-based University of Dundee have demonstrated a new method of destroying an ‘undruggable’ protein known to play a role in cancer, raising the possibility of a new therapeutic approach to the disease.

Mutations of the K-Ras protein have long been known to cause many cancers, including lung, colorectal and pancreatic cancers. But despite decades of work by researchers across the world, an inhibitor for this protein has proven elusive. As a result, scientists have increasingly looked to novel ways of targeting K-Ras.

A team from Dundee’s Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC PPU) led by Dr Gopal Sapkota, Programme Leader, Proteins’ Phosphorylation, University of Dundee, had previously engineered the Affinity-directed PROtein Missile (AdPROM) system that allows for the efficient and rapid degradation of specific target proteins in cells. Being able to degrade intracellular disease-causing proteins offers a unique opportunity for therapeutic intervention but it was not known whether these ‘protein missiles’ would be able to destroy K-Ras.

In two papers, published this week in Cell Chemical Biology, the Dundee team has shown, for the first time, that it is possible to target K-Ras for degradation using the AdPROM system. The use of this technology in humans remains some way off, but Dr Sapkota now expects rapid progress in chemical degraders of K-Ras over the next few years.

“K-Ras is the Holy Grail of cancer targets, so the knowledge that it can be targeted for degradation in this way is an extremely promising discovery,” said Dr Sapkota. “This potentially allows for any small molecule that binds K-Ras, rather than just inhibitors which have proven to be elusive, to be converted into a degrader. In the next 10 years I would hope we have options available to target these cancers...
How sheep and bacteria are helping the fight against COVID-19

By Dr Paul Davies, medical research council unit manager, University of Dundee, April 3, 2020

SARS-CoV-2, the virus that causes COVID-19, works by infecting the respiratory system. If it gets into the lungs, it causes an immune reaction, which can lead to pneumonia and even death. As the University of Dundee, we have identified 28 proteins created by SARS-CoV-2 that produce an immune response in the body. These proteins are vital research tools for developing diagnostics and in helping to understand how the virus infects and attacks us.

Viruses are encoded by genetic information called RNA, which serves as a blueprint for how they are put together. The "program" contains information on how to replicate and how to infect and attack other cells. By understanding the virus's genetic blueprint, we can see how to fight back.
Parkinson’s Life
Parkinson’s Life is an online ‘lifestyle’ magazine for people affected by Parkinson’s disease. We are a voice for the international Parkinson’s community.

New enzyme discovery could “put the brakes” on Parkinson’s

Researchers at the University of Dundee, UK, have discovered an enzyme that could reverse mutations in a gene commonly associated with the development of Parkinson’s.

The enzyme, called PPM1H, has been found to naturally prevent the biological activity of LRRK2 – it is hoped this discovery could slow down the progression of the disease.

The researchers are now working with the university’s Drug Discovery Unit to develop compounds that could activate the newly discovered enzyme.

Professor Dante Alessi, one of the lead researchers, said: “Parkinson’s is like a runaway train – at present we have no way of putting the brakes on to slow it down, let alone stop it. This new enzyme we have found acts as the brakes in the pathway that causes Parkinson’s in humans.”
Researchers Find New Enzyme That Might Aid in 'Putting the Brakes' on Parkinson's Disease

by Arif Peral, PhD | November 5, 2019

Researchers have discovered a new enzyme that might aid in “putting the brakes” on Parkinson’s by inhibiting the LRRK2 pathway, known to play a critical role in this neurodegenerative disease.

The findings are still at an early stage, but the team is already trying to find compounds that can switch on this enzyme in the hopes of finding a new therapy that can slow down Parkinson’s disease.

The study, “TREM2 phosphorylation counteracts LRRK2 signaling by selectively dephosphorylating Fath protein,” was published in the journal eLife.

New Enzyme Might Aid in 'Putting the Brakes' on Parkinson's...
PARKINSON : L’enzyme, présente en chacun de nous, qui freine la maladie

santelog.com/actualites/parkinson-lenzy...

Estimated Views 1.6K
Estimated views calculated based on audience size and social...

Engagements 50
Total number of social engagements
Enzyme Discovery May Put Brakes on Parkinson's Disease

genengnews.com/news/enzyme-discover...

Estimated Views 3.49K
Estimated views calculated based on audience size and socia...

Engagements 1.11K
Total number of social engagements
Researchers at the University of Dundee have made a discovery they believe has the potential to put the brakes on the ‘runaway train’ that is Parkinson’s disease.

The team, based at the Medical Research Council Protein Phosphorylation and Ubiquitination Unit (MRC-PPU) in the School of Life Sciences, have discovered a new enzyme that inhibits the LRRK2 pathway. Mutations of the LRRK2 gene are the most common cause of genetic Parkinson’s.

Enzymes are molecular machineries that regulate the biological processes required to maintain healthy functioning. By targeting these, they can be harnessed by drugs to increase or decrease the level of certain activity. In this instance, the LRRK2 pathway.

Much of the knowledge around this pathway originated at Dundee and the team already knew that some enzyme existed that could reverse LRRK2 activity so set out to discover and characterise it. The enzyme they found, called PPM1H, has been shown to possess remarkable properties to reverse the biology triggered by LRRK2.

Professor Danilo Alves, Director of the MRC-PPU, said: “Parkinson’s is like a runaway train - at present we have no way of putting the brakes on to slow it down, let alone stop it. This new enzyme we have found acts as the brakes in the pathway that causes Parkinson’s in humans.”

“We have known for many years that the LRRK2 pathway is a major driver behind Parkinson’s but the concept of developing an activator of the PPM1H system to treat the disease is completely new. This finding opens the door for a new chemical approach to the search for
Researchers make critical cell division discovery

Researchers at the University of Dundee have solved one of the mysteries of cell division, a discovery which may shed light on cancer development and one day help develop new drugs to treat the disease.

Humans are made of approximately 37 trillion cells, all of which need to be constantly replaced with exact copies when they become old or damaged through an orderly process called cell division, or mitosis. Depending on the location of the cells in specific tissues and organs, the cell division axis determines the correct positioning of...
<table>
<thead>
<tr>
<th>April 01, 2019</th>
<th>ONLINE</th>
</tr>
</thead>
</table>

Parkinson's Disease: Risks, Symptoms and Treatment

[link](livescience.com/65123-parkinsons-disease...)

<table>
<thead>
<tr>
<th>Estimated Views</th>
<th>19.7K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated views calculated based on audience size and socia...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engagements</th>
<th>532</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of social engagements</td>
<td></td>
</tr>
</tbody>
</table>
Scientists confirm the role of 'molecular switch' in Parkinson's disease

Scientists have confirmed that a protective cell mechanism can be disrupted in the brains of people with Parkinson's disease. The mechanism protects cells against damage caused by faulty mitochondria, the small power units that produce cells’ energy.

medicalnewstoday.com/articles/323634

Estimated Views
Estimated views calculated based on audience size and socia...

Engagements
Total number of social engagements
Parkinson's Disease Enzyme Implicated in More Cases Than Realized

Levels of active LRRK2 were high even in Parkinson's patients without a mutation in LRRK2, suggesting that inhibitors of the protein could treat a wider patient population than expected.

Even though Parkinson's patients don't have mutations in a gene called LRRK2, more of the active enzyme the gene generates is present in their brains than in healthy brains, researchers reported last.

Interested in reading more?

Become a Member of The Scientist
Parkinson's Drugs Aimed at Rare Gene Mutation Show Promise for Other...

Parkinson's Drugs Aimed at Rare Gene Mutation Show Promise for Other...
Researchers make key discovery about cellular pathway linked to myriad of diseases

Researchers from the University of Dundee and the Francis Crick Institute have made a significant discovery about a cellular pathway associated with developmental defects and a myriad of diseases ranging from alzheimers to colorectal cancer.

The research, jointly led by Dundee’s Dr Gopal Sapkota and Professor Sir Jim Smith of the Crick, examined the role of a protein called PAWS1 in the Wnt signaling pathway, which is of fundamental importance in shaping developing embryos and controlling cell fate in adults.

Mutations that cause slight alterations in Wnt signaling can lead to the developmental defects and disease. The researchers have now demonstrated that PAWS1 plays a significant impact in controlling the Wnt signaling pathway.

"Abnormal Wnt signaling is associated with many cancers, particularly colorectal cancers," said Dr Sapkota. "Understanding how PAWS1 regulates Wnt signaling may therefore offer new opportunities and targets for potential interventions."

The Dundee-Crick team had previously made the discovery of PAWS1 as a protein associated with a range of signaling processes involved in the development of bone, cartilage and other tissues in the human body. In order to further understand its role in development and disease, they looked at frogs as the activation of Wnt signaling in frog embryos is known to cause a two-headed tadpole.

The researchers found that injection of PAWS1 into frog embryos resulted in two-head tadpoles, thus implicating PAWS1 in the control of Wnt signaling. When they removed PAWS1 from a human osteosarcoma cell line, they found that Wnt signaling was inhibited.

To further explore the molecular mechanisms through which PAWS1 controls Wnt signaling, the researchers discovered that PAWS1 interacts with Cask1 protein, which...
Signalling study sheds light on conditions from alopecia to cancer

Signalling study sheds light on conditions from alopecia to cancer

Researchers from the University of Dundee and the Francis Crick Institute have made a significant discovery about a cellular pathway associated with developmental defects and a myriad of diseases ranging from alopecia to colorectal cancer.

The research, jointly led by Dundee’s Dr Gopal Sapkota and Professor Sir Jim Smith of the Crick, examined the role of a protein called P95S in the Wnt signalling pathway, which is of fundamental importance in shaping developing embryos and controlling cell fate in adults.

Mutations that cause eight alterations in Wnt signalling can lead to the developmental defects and disease. The researchers have now demonstrated that P95S plays a significant impact in controlling the Wnt signalling pathway.

"Abnormal Wnt signalling is associated with many cancers, particularly colorectal cancer," said Dr Sapkota. "Understanding how P95S regulates Wnt signalling may therefore offer new opportunities and targets for potential interventions."

The Dundee-Crick team had previously made the discovery of P95S as a protein associated with a range of signalling processes involved in the development of bone, cartilage and other tissues in the human body. In order to further understand its role in development and disease, they looked at frogs as the activation of Wnt signalling in frog embryos is known to cause a two-headed tadpole.

The researchers found that injection of P95S into frog embryos resulted in two-headed tadpoles, thus implicating P95S in the control of Wnt signalling. When they removed P95S from a human colorectal cancer cell line, they found that Wnt signalling was inhibited.

To further explore the molecular mechanisms through which P95S controls Wnt signalling, the researchers discovered that P95S interacts with Casein Kinase 1 alpha (CK1α), an enzyme that is known to regulate Wnt signalling.

They went on to map the determinants of P95S-CK1α interaction and subsequently demonstrated that P95S mutations incapable of associating with CK1α not only fail to cause two-headed tadpoles but are also unable to activate Wnt signalling.

Signalling study sheds light on conditions from alopecia to cancer

March 22, 2018 • ONLINE

eurekalert.org/news-releases/543130

Estimated Views 1.26K

Engagements 0

Total number of social engagements
TV & Radio

16 pieces of coverage
Ian Dale show interview: Esther Sammler - clinical neurologist role & lived...
Sky News Interview (Tweet of clip): Miratul Muqit

twitter.com/skynews/status/13595262322...

Estimated Views 166K
Estimated views calculated based on audience size and social...

Engagements 66
Total number of social engagements
BBC Radio Scotland (Good Morning Scotland Show) Interview: Dario Alessi -...
WAVE FM Interview: Dario Alessi - COVID-19 research being carried out by MRC-...
BBC Reporting Scotland

Interview: Dario Alessi - COVID-19 research being...
STV News Interview: Dario Alessi - COVID-19 research being carried out by MRC-...
Tay FM Interview: Dario Alessi - COVID-19 research being carried out by MRC-...
That's TV East Scotland: Sapkota Lab - Cell Division Discovery

facebook.com/ThatsTVEastScotland/video...
The best of the BBC, with the latest news and sport headlines, weather, TV & radio highlights and much more from across the whole of BBC Online.
Wave 102 Radio Interview:
Gopal Sapkota - PAWS1 publication (EMBO Reports)
Scotland Tonight
Current affairs programme on STV, broadcast live Monday to Wednesday at 10.40pm & Thursday at 8.30pm. News, politics, sport, arts, and entertainment.

Scotland Tonight Interview (Tweet of Clip): Miratul Muqit

twitter.com/scotlandtonight/status/10602...
STV News Interview: Dario Alessi - DSTT Collaboration Celebrating 20 years
STV News interview: Greg Findlay - Wellcome Trust Sir Henry Dale Fellowship...
“That’s TV”, Scotland interview: Greg Findlay - Wellcome Trust Sir Henry...
Tay FM interview: Dario Alessi - New Dundee-Edinburgh Parkinson's...
Last chance to see @bbcalba documentary on #Parkinson bbc.in/2lu4rlf featuring research of @mrcppu @UoDLifeSciences @miratul_neuro. Great advice by Sir Philip Cohen on how to run a research institute - always hire people who you think are better than you! #science
Blogs & Podcasts

10 pieces of coverage
STEM Ambassadors in Scotland coordinates the Scotland STEM Ambassador Hub on behalf of STEM Learning.

Blog: What do scientists do with yeast and worms?

by Tom Williams, a Postdoc in the Rousseau group at the MRC-PPU, University of Dundee

Our bodies are made up of lots and lots of cells. I try to figure out how cells work so that we can fix them if they go wrong and cause a disease. To do this I use creatures you might find in soil or rotting fruit!

Why do I use these creatures to try and learn more about human disease? Well, humans are complicated. Really complicated. There are around 200 different types of cell in our bodies, each of which has over 20,000 genes. These genes contain the information to make over 80,000 proteins, and these proteins perform the tasks our body needs to stay alive.

Not every cell uses every gene or makes every protein. Several proteins do more-or-less the same jobs as each other. This helps protect our cells in case there are problems with one particular protein. Unfortunately, this can make it really difficult to figure out the job each protein does!

Enter model organisms. These are “simple” creatures with fewer genes. These genes themselves make fewer proteins, which means individual genes and proteins can be removed or deleted with less chance of there being other proteins to take over their jobs. This helps us work out the job performed by the protein made from that particular gene. When you take it away, what changes? If it makes the cell stop moving around, the protein is probably involved in cell movement. We can take what we learn as a guide for what similar proteins might do in our bodies.

Model organisms are different from humans but have some similar characteristics. Choosing the right organism to study depends on what you want to find out. C. elegans nematodes are tiny worms with a fully functioning nervous system. S. cerevisiae yeast have similar...
Welcome to the Royal Society | Royal Society
The world’s oldest independent scientific academy, dedicated to promoting excellence in science.

207K
Unique Visits
Provided by
SimilarWeb

June 28, 2020 • ONLINE

World Parkinson’s Day – Q&A with Professor Miratul Muqit | Royal Society

royalsociety.org/blog/2020/04/world-par...

Estimated Views 1.16K
Estimated views calculated based on audience size and socia...

Engagements 0
Total number of social engagements

World Parkinson’s Day – Q&A with Professor Miratul Muqit

We ask leading neurobiologist and Open Biology author Professor Miratul Muqit about his research and how genetic and biochemical discoveries are transforming our understanding of the biological basis of Parkinson’s.

11 April 2020
6 min read

Overview
Each year, the international community comes together on World Parkinson’s Day (11 April), to raise awareness of the illness.
The Edinburgh / Dundee Parkinson’s Research Symposium 2019 – Reflections

On Friday past (22nd March) I was honoured to be invited to be a panellist at the 2nd Edinburgh and Dundee research symposium. The Universities of Dundee and Edinburgh are both making huge contributions to the field of PD research, helped in part by two active and engaged patient support groups, ERRG and DRIG, which aside from the acronyms sounding vaguely like the names of minor characters in a medieval fantasy novel, are also tremendous examples of what can be achieved by a positive, constructive and fully engaged relationship between researchers and patients. The event was a showcase of the work of both of these groups, and what was especially apparent was the warm bond between patient advocates and researchers.
Moving Away from Antibiotics in Animal Agriculture

Bacteria-killing viruses could protect livestock without the risk of creating resistant microbes

By Kyle Berritt on August 22, 2019

READ THIS NEXT

PLANETARY SCIENCE
Newfound Asteroid May Strike Earth in 2046, NASA Says

BIOMEDICAL SCIENCE
Brain Speaker and LiveScience

ASTRONOMY
Are Telescopes on the Moon Doomed?

DECOUVERTEAU AND Nature magazine

NEUROLOGY
Understanding Frontotemporal Dementia, the Leading Cause of Dementia in People under Age 60

Diana Kwon
Think PINK: Professor Miratul Murqit on Parkinson's disease at the…

seekingscience.org/think-pink-professor-…

Engagements

MRC PPU Press Coverage Highlights: 2018-2023
Shaky Team from Shaky Toun
Fundraising for Parkinson Research

January 27, 2017

Parkinson’s Research

shakyteam.com/parkinsons-research/

Engagements

Total number of social engagements
#30DaysChallengeUoD – University Culture Online

learningspaces.dundee.ac.uk/dundeeuni...

Estimated Views

3

Estimated views calculated based on audience size and socia...

Engagements

0

Total number of social engagements

Our amazing staff and students are nearing the end of their challenges to raise money for Parkinson's research. There is still time to donate so we thought we should remind you of some of the creative things they have been up to. As well as all the brave (or foolhardy) sporting events there are some fantastic cultural activities. There are several #30Day challenges, with participants still going strong after all this time. Here are a few examples with links to their Just Giving pages (sorry not to include everyone, all the fundraisers and challenges can be seen here, which is where you can also go to donate).

Rane Francis Elliott

Day twenty-two of the drawing for Parkinson's challenge. Today I learnt that Monoamine oxidase B Inhibitors (MAO-B), which are traditionally used as a last line of treatment for major depressive disorder and atypical depression, is also used to treat Parkinson's. MAO-B blocks an enzyme that breaks down dopamine and allows the dopamine to function in the brain for longer.
Anchor
Create, distribute, host, and monetize your podcast, 100% free.

4.62M
Unique Visits
Provided by
SimilarWeb

Protein Kinases with Dr. Bustos by Research In Review

anchor.fm/research-in-review/episodes/Pr...

Engagements
3
Total number of social engagements
Benjamin Stecher: Why Is It Taking So Long To Stop Neurodegenerative Diseases?

An Op-Ed by Benjamin Stecher

Benjamin Stecher was diagnosed with Parkinson's disease at the age of 29. He has since become actively involved in Parkinson's disease research and advocacy. He is the founder of Tomorrow Edition, where he has interviewed close to 80 experts in Parkinson's disease. He sits on several patient advisory boards and speaks and consults regularly at academic labs, biotech and pharmaceutical companies, working to bring better therapies for people diagnosed with Parkinson's disease. He is also the co-author of Brain Fables: The Hidden History of Neurodegenerative Diseases and a Blueprint to Conquer Them.

Medical science is progressing slower than the rate at which the neurons in my brain are dying.

That was the uneasy conclusion I reached after half a decade spent traveling the world, going from one research center to the next, talking to all the experts I could, trying to find out what could be done to stop or at least slow my neurodegeneration. You see, I was diagnosed with Parkinson's disease at 29. It took me a few years to wrap my head around it, but at 32, I left my career behind to dive head-first into this field and find out as much as I could about researchers' work.

I have since visited dozens of academic labs and biotech companies, spoken at length with...
Shining light on the Parkinson's disease associated LRRK2 kinase…

youtube.com/watch?v=6chRTLOCEHg

Views 962
Number of views

Engagements 18
Total number of social engagements
Print clippings

3 pieces of coverage
Dundee research projects scoop EU funding

10 Dec 2020

Two Dundee University projects have scooped more than £3 million in a prestigious EU funding competition.

The European Research Council (ERC) has funded projects led by Dr Yogesh Kulatnu and Dr Jorunn Bos among the winners of the latest Consolidator Grant competition.

The scheme sees a total of £655m awarded to Europe’s top researchers to aid in the development of their research projects.

Dr Kulatnu’s project, StressHub, aims to gain insights into the fundamental principles regulating stress at the cellular level.

The £2.3m (€4.64m) ERC funding will enable Dr Kulatnu and his colleagues to develop new technologies and methodologies for use in understanding how unsolved stress results in disease.

Dr Kulatnu said: “We are studying almost unexplored areas of cell biology which has immense potential for ground-breaking discoveries.”

Dr Bos, a principal investigator in the division of plant sciences at the James Hutton Institute in Invergowrie, and her project, APHIDTRAP, will explore and develop new ways to provide crop protection against insects.

Her grant, worth almost £2m, will allow her research team to take new directions to answer important questions on how insects such as greenfly and blackfly, commonly known as aphids, are such successful pests.
Two Dundee University projects have scooped more than £3 million in a prestigious EU funding competition.

The European Research Council (ERC) included projects by Dr Yogesh Kulathu and Dr Jorunn Bos among the winners of the latest Consolidator Grant competition.

The scheme sees a total of €6.65m awarded to Europe's top researchers to aid in the development of their research projects.

Dr Kulathu’s project, StressHUB, aims to gain insights into the fundamental principles regulating stress at the cellular level.

The €2.1m (£1.84m) ERC funding will enable Dr Kulathu and his colleagues to develop new technologies and methodologies for use in understanding how unresolved stress results in disease.

Dr Kulathu said: “We are studying almost unexplored areas of cell biology which has immense potential for ground-breaking discoveries.”

Dr Bos, a principal investigator in the division of plant sciences at the James Hutton Institute in Invergowrie, and her project, APHIDTRAP, will explore and develop new ways to provide crop protection against insects.

Her grant, worth almost €2m, will allow her research team to take new directions to answer important questions on how insects such as greenfly and blackfly, commonly known as aphids, are such successful pests.
Scots sheep could hold key to tackle Covid-19

Dundee University is conducting research on antibodies from the animals in response to the make-up of virus

GRAHAM BROWN

A flock of Tayside sheep could provide the key to tackling Covid-19.

Scientists at Dundee University are investigating antibodies from animals on a nearby farm as part of efforts to study the workings of Covid-19 and its destruction of the human respiratory tract.

Professionals believe the antibodies will be produced by the sheep in response to the coronavirus, SARS-CoV-2, which has been isolated in a laboratory and introduced to sheep.

Researchers hope this research will help to increase the understanding of the virus, leading to potential treatment and vaccine development.

Dr Paul Davies, the Medical Research Council and messy, said: “At Dundee University we work closely with farmers to understand and develop responses to diseases that are important to the health of the flock and the health of the people who eat sheep meat.”

“Antibodies are produced in animals as a result of infection or vaccination and these are collected to produce a product that can be used to treat patients.”

“The Tayside sheep are a select group of animals and researchers can monitor the animals’ health and well-being as they undergo testing and treatment.”

“The antibodies are then brought to market and are prepared for their own use.”

“Antibodies are produced in animals as a result of infection or vaccination and these are collected to produce a product that can be used to treat patients.”

“The Tayside sheep are a select group of animals and researchers can monitor the animals’ health and well-being as they undergo testing and treatment.”

“The antibodies are then brought to market and are prepared for their own use.”
final product will be sent to labs around the world to be used in the fight against Covid 19," he said. Mr Davies.

"Each researcher is specialised in the particular process used in the antibody production process, from the molecular biology cloning of the genetic sequences, proteins scientists to manufacture the components, farm workers taking care of our sheep and technicians preparing the antibodies when harvested from the sheep.

He compared the process to finding the right key to unlock a door.

Mr Davies said: "These antibodies bind very tightly to the real proteins and do not recognise other proteins, such as the ones in our bodies. It can be thought of a little like the key to your front door. There are millions of keys but only one will fit perfectly in the lock in your door.

"In the case of these antibodies, each antibody will only fit the viral proteins it was designed for. This makes antibodies useful in identifying each part of the virus, as well as the complete virus, and understanding how it infects us and the best way of defeating it."

Mr Davies said certain parts of the virus are believed to be very important in the processes by which it infects us or attacks our lungs.

"By being able to capture and study these parts of the virus by having antibodies that specifically capture and identify them we will enable us to understand this much more fully," he said.

john@newcousins.co.uk
As a nation, we are faced by a profoundly challenging situation.

Dr Paul Davies.

Top: Scottish sheep could unlock the key to combating Covid-19. Above: The Prince of Wales took to the royal websites and social media accounts to deliver a message of hope to the UK, saying this health crisis "will end" and thanking the NHS for their hard work. Pictures JASPERIMAGE/PA.
Newspaper article: Greg Findlay's Wellcome Trust Sir Henry Dale Fellowship...